NAIC-1D(RS)T-0026-95

NATIONAL AIR INTELLIGENCE CENTER

C DECOMPILE CONTROLLING FLOW ANALYSIS--THE
PROCESSING OF AN UNSTRUCTURED CODE PROGRAM

DTEC Lu Jiquan

& ELECTE[%:
QN1 21995 &

Aprroved for public release;
Distribution unlimited.

w1 PO TE TR o
P ST I T D)
I}‘L‘}:G C'vl LY .iibl s T rLae .
Y R B L N M S R T TR e e Al s R e T T T S A TS

NAIC-ID(RS)T-0026-95

HUMAN TRANSLATION
NAIC-ID(RS)T-0026-95 1 May 1995
MICROFICHE NR: ™MS € & 003

C DECOMPILE CONTROLLING FLOW ANALYSIS--THE
PROCESSING OF AN UNSTRUCTURED CODE PROGRAM

By: Lu Jiquan
English pages: 9

Source: Jisuanji Gongcheng, Vol. 18, Nr. 6, 1992,
pp. 38-41

Country of origin: China
Translated by: SCITRAN
F33657-84-D-0165
Requester: NAIC/TATA/Keith D. Anthony
Approved for public release; Distribution unlimited.

THIS TRANSLATION IS A RENDITION OF THE ORIGINAL | PREPARED BY:
FOREIGN TEXT WITHOUT ANY ANALYTICAL OR EDITO-
RIAL COMMENT STATEMENTS OR THEORIES ADVO- | TRANSLATION SERVICES

CATED OR IMPLIED ARE THOSE OF THE SOURCE AND | NATIONAL AIR INTELLIGENCE CENTER
DO NOT NECESSARILY REFLECT THE POSITION OR WPAFB, OHIO

OPINION OF THE NATIONAL AIR INTELLIGENCE CENTER.

NAIC- 1D(RS)T-0026-95 Date 1 May 1995

L

GRAPHICS DISCLAIMER

All figures, graphics, tables, equations, etc. merged into this
translation were extracted from the best quality copy available.

Accesion For T

NTIS CRA&I N
DTIC TAB 0
Unanrounced]
Justitication]
By

Distribution /

Availability Codes

Avail and [or
Special

Al

C DECOMPILE CONTROLLING FLOW ANALYSIS--TH
~THE
UNSTRUCTURED CODE PROGRAM PROCESSING OF AN

. /38
Lu Jiquan

ABSTRACT

This article analyses four basic unstructured models in
program code as well as--during decompile controling flow
analysis-—-analyzing the processing of these four types of
unstructured models. This guarantees that high level program
readability coming out of decompilation is good and maintains
source program structure. This article also introduces
translation to structured of main unstructured models as well as
restoration of the C language characteristics of break and
Continue and using GoTo statements to handle a number of

unstructured situations.

KEY WORDS C Decompile Unstructured Models Controling Flow

Decompilation is a type of tool for translating low level
code to high level code. As far as carrying out analysis of
controling flow associated with low level code is concerned, it
restores various types of control structures. For example, if-

else structures, cyclical structures, Switch structures, and so

on, are one key part in decompilation.

Low level codes--for example, compilation codes--are most
certainly not all structured. The primary reason is that, in
programmers utilize GoTo statements for their
as far as unstructured factors contained in

source programs,
creation. Moreover,
code to carry out targets produced after going through
compilation are concerned, besides GoTo statements utilized by
source programs, they are also given rise to by break and
Continue statements in C language. 1f appropriate processing is

not carried out on these unstructured factors in target code,

* Numbers in margins indicate foreign pagination.
Commas in numbers indicate decimals.

1

then, during decompilation, it is very possible that the quality

of translation results will be very bad. Because of this, as far

as handling of unstructured problems in program flow graphs is
concerned, it is very important in control flow analysis.
Processing of unstructured code includes two areas: the
first, eliminating unstructured factors in program code; the
second, maintaining as much as possible the structure of the
source program. For example, break, Continue, and a number of

necessary GoTo statements, etc.

1 PROGRAM CODE STRUCTURED TRANSLATION

Eliminating unstructured factors in program code then

requires the carrying out of structured translations on them.

According to the definitions of William MH., there are
three types of basic structural flow graphs. They are,
respectively, simple sequence, if-then-else, and while. These
basic flow graphs are inserted into sets and build up into
complex flow graphs. If one individual program graph is

/39

completely composed of these three types of basic structural flow

charts, then the program graph is called structured. These three

types of basic structured flow graph are as shown in Fig.l.

S, P P S

cds, L Esetlss bl st P

b §3: BRE ' M“ﬁﬂ

i -~

Fig.1
Key: (1) Simple Sequence (2) 1If-Then-Else (3) While

2

On the basis of the analytic induction of Oulsum G., there
are four types of basic unstructured forms. They are ID, OD, IL,

and OL as shown in Fig.2.

D | oD iL oL
et I R
A A A A
i [i .
B —E B —E B —E g-—E
A | b, K
. C C C ,C
N | I
Fig.2

With regard to the realization of translations from
unstructured to structured, it is only necessary to consider any
three types from among the four types above. The reason is that
any equivalent translation of unstructured models to structured
models is in no case capable of occurring independently. The
translation necessarily gives rise to a series of flow graph
model translations. For example, processes for the elimination
of the three types of ID, OD, and IL unstructured models in flow
graphs on the basis of a fixed sequence will then cause OL
unstructured models existing in source flow graphs to also be
automatically eliminated. Therefore, we only need to consider
equivalent translations associated with these three types of
basic ID, OD, and IL unstructured models. These three types of

translations are introduced below.

1.1 ID Structured Translations

Fig.3 c

In this, g stands for a running direction (execute e) when

decision point A satisfies condition g. When condition q
is satisfied, after executing d, point B is arrived at. 1In the
same way, b stands for operations executed during the process of

taking nodal point E to B.

On the basis of Bambridge rules, Fig.3 translates to become

Fig. 4.

I
q..<‘a'd-|
‘ b-a

Fig.4

&

1.2 OD Structured Translation

(e]) .
1 s
lq'd e 1 a-d
e Bty = I7°
|

E

Fig.5

p.q are the conditions for decision points A and B. b, c,
d, and e are operations. Introduce the new variable p. Add new
operation P=0. P:=p and, taking the original point B shifts
associated with p conditions, change them into shifts with

regard to P. Also, add turning point B'shifts with regard to

condition P.

1.3 IL Structured Translation
1L

Fig.6

The meanings of symbols in this are the same as above.
Structural translation seen in terms of equivalency is no
problem. The reason is that each step of translation is
mathematically equivalent. The entire (illegible) graph also

maintains equivalency.

2 UNSTRUCTURED MODEL PROCESSING

With MicroVAXII/VMS operating system, we realized C
decompilation systems. Processing principles for unstructured
codes in program code are: eliminate the main unstructured
factors, and, as much as possible, maintain original program code
structures, strengthening easy readability. Below, unstructured

code processing based on program graphs is introduced.
2.1 Unstructured Code Processing Associated with ID

Due to the fact that our C decompilation system carries out
control flow analysis based on program graph methods, reference
was made to the whole article "Decompilation Program Graph Design
and Control Flow Analysis". Therefore, it is possible not to
consider it for this unstructured type. The reason is that, as
far as this type of unstructured model is concerned, in program

graphs, automatic elimination is possible.

5

2.2 Unstructured Processing Associated with OD

With regard to unstructured jump outs from decisions, in
programs in general, there may still be some. Programmers are
able to use GoTo statements stemming from certain types of
special causes. As a result, during processing, we also did not
do structured translations, but used GoTo statements for

processing. Fig.7 then shows program flow after processing.

op
|

A

YA Eannaann
ﬁ,., Bf’-l-t’.e : x’r“““____J

Pre Q- EGOTO'

C

l

Fig.7

In the case of the newly added junction points x1, x2 in
flow diagrams, if statements and GoTo statements are used
together to handle unstructured, and operation b taken to point
B is separated out from the flow graph. As far as flow graphs
from E' to E are concerned, unstructured code processing is

handled in the same way.
2.3 Unstructured Processing Associated with L

Treatment of unstructured code which jumps out of loops is
divided into three situations for processing: (1) using break
statements for processing, (2) using Continue statements for
processing, and (3) using GoTo statements for processing.

With break statements, it is possible to eliminate numerous

loop outlets. The same as 2.2, use is also made of GoTo

6

statement processing. Respective introductions are made below.
Loops use dowhile forms as examples. while forms are similar--as
is shown in Fig.8. I

Fig.8

Dotted lines show three situations associated with jump outs from

loops. (1) Restoring break statement and eliminating
unstructured elements. (2) Restoring Continue statement and
eliminating unstructured elements. (3) Using GoTo statements to

process unstructured code.

(1) Use break statements to eliminate unstructured code (Fig.9)

B | break

Fig.9

(2) Use Continue statements to eliminate overlapping loops

(Fig.10)
| _[_1

B N B (Continue

Fig.10

/41

(3) Use GoTo statements to process unstructured code (Fig.1l1l)

L |

B % ... [BeetoE
NGRS N A I
=
Fig.1l1

2.4 Unstructured Processing Associated with IL

Structured transformations must be carried out with regard
to unstructured codes jumping into loops. Because using GoTo
statements to jump into loops is very rarely seen, programmers
generally do not use them. Moreover, some high level languages
basically do not permit this type of situation to appear.

Assume Q is a logic variable. Below is a display of IL
structured translation as shown in Fig.12.
Add the two expressions Q:=1, Q:=0.

Fig.1l2

Point A adds conditions to a decision.

REFERENCES

} Oulsnam G. Unravelling Unstructured Progra-
ms. The Computer Journal 1982 25 (3): 378
2 Qulspam G. The Algorithmic Transformation
of Schemas to Structured Form. The Computer

Journal 1087, 30 (1): 43 .

(Editor 2Zhang Tingjun)

DISTRIBUTION LIST

DISTRTIBUTTION DIRECT TO RECIPIENT

BO85 DIA/RTS-2FI1
" C509 BAIIOC509 BALLISTIC RES ITAB

€510 R&T IABS/AVEADCOM
C513 ARRADCOM

C535 AVRADCOM/TSARCOM
C539 TRASANA

Q592 FSTC

Q619 MSIC REDSTONE
Q008 NTIC

Q043 AFMIC-IS

E051 HQ USAF/INET
E404 AEDC/DOF

E408 AFWL

E410 AFDIC/IN

E429 SD/IND

P005 DOE/ISA/DDI

PO50 CIA/OCR/ADD/SD
1051 AFIT/IDE

PO90 NSA/CDB

2206 FSL

PRENRPRRPRPRPRRRPREARPRRRRRP

Microfiche Nbr: FID95C000277

, NAIC-ID(RS)T-0026-95

